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Abstract 

The purpose of this article is to show that the Navier-Stokes equations can be rewritten as a set of linearized 

inhomogeneous Euler equations (in convective form) with source terms that are exactly the same as those that would 

result from externally imposed shear stress and energy flux perturbations. These results are used to develop a 

mathematical basis for some existing and potential new jet noise models by appropriately choosing the ‘base flow’ 

about which the linearization is carried out. 

1. Introduction 

Lighthill (1952, 1954) provided a systematic basis for predicting jet noise when he rearranged the Navier- 

Stokes equations into the form of a linear wave equation for a medium at rest with a quadrupole-type source term, 

which includes a pressure/density contribution that Lilley (1974) showed to be more appropriately described by a 

dipole-type source. The crucial step in this so-called acoustic analogy approach amounts to assuming that the source 

term is in some sense known or that it can at least be modeled in an approximate fashion. While Lighthill’s strategy 

turned out to be remarkably successful in predicting the gross features of the sound radiation from turbulent air jets, 

the engine manufacturers soon realized that they needed a much more sensitive tool with the capability of predicting 

how even relatively small changes in the flow would affect the radiated sound. This resulted in a number of attempts 

to improve the Lighthill approach. Early efforts were focused on accounting for mean flow interaction effects. 

Phillips (1960), Lilley (1974), and many others, sought to accomplish this by rearranging the Navier-Stokes 

equations into the form of an inhomogeneous convective or moving medium wave equation rather than the 

inhomogeneous stationary medium wave equation originally proposed by Lighthill. 

But, jet noise reduction technology is still largely empirical and the most advanced industrial noise prediction 

methods such as GE’s MGB approach (Balsa et al. 1978), which is based on Lilley’s extended acoustic analogy, 
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may do a reasonable job of predicting the noise from simple round jets, but appear to be incapable of predicting the 

changes in the sound field that occur when noise suppression devices are deployed and therefore cannot be used to 

accomplish their intended purpose-the evaluation of the acoustic performance of these devices. It is therefore still 

necessary to develop noise prediction methods that exhibit the required sensitivity to relatively small flow changes. 

The most obvious approach would be to use large-scale numerical simulation, i.e., DNS. However, as has been 

frequently pointed out, the number of mesh points needed to fully resolve any turbulent flow is proportional to the 

Reynolds number R based on the characteristic length scale of the turbulent eddies raised to the nine-fourths power. 

But since R is of the order of lo5 to lo7 for typical jet engine exhaust flows, this means that 10” to I O t 5  grid points 

would be needed to resolve all of the relevant length scales. This is beyond the capabilities of currently available 

machines and the community has been forced to acknowledge that meaningful predictions will have to be based on 

some sort of combined analytical-modeling method (such as the extended acoustic analogy approaches referred to 

above) or some approximate numerical method such as LES or perhaps some combination of the two. A number of 

such approaches have recently appeared in the literature. 

The present paper is an attempt to provide a rational basis for these approaches. It begins by showing that the 

Navier-Stokes equations can always be recast into the convective form of the linearized Navier-Stokes (LNS) 

equations but with modified dependent variables, with the viscous stress perturbation replaced by a certain 

generalized Reynolds stress and, with the heat flux perturbation replaced by a generalized stagnation enthalpy flux. 

The ‘base flow’ about which the equations are linearized can be any solution to a very general class of 

inhomogeneous Navier-Stokes equations with arbitrarily specified source strengths. These exact results are then 

used, along with suitable choices for the base flow source strengths, to show how many of the recent and some of 

the more frequently used classical approaches to the jet noise problem can be put on a more rational basis and, more 

importantly, extended in new directions. The LNS equations are, of course, still nonlinear but the nonlinearity is 

effectively contained in the generalized Reynolds stresses and enthalpy flux-which also contain contributions from 

the base flow sources. The focus is on obtaining useful exact results and discussion of modeling and/or numerical 

issues (and the obligatory experimental comparisons) is only included when it relates to base flow selection. 

The acoustic analogy-type approaches and their extensions roughly correspond to treating the generalized 

stresses and enthalpy flux as known source terms that can be estimated or modeled as in the original Lighthill 

analysis. However, there are also cases where the base flow sources, which can be determined as part of the base 
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flow computation, provide the dominant contribution to these quantities. This is most significant when the base flow 

is non-radiating (but, of course, unsteady) because the residual flow can then be identified with the acoustic part of 

the motion. The most obvious way of choosing the (unsteady) non-radiating base flow is to require that it be 

incompressible--but there are better choices, which are described in 5 3.4 below. This leads to a different approach 

to jet nose modeling (related to the choice of base flow), which has not, as yet, been exploited. There are also cases 

where a radiating base flow is the most appropriate choice. These are described in 0 3.3. 

The fundamental equations are derived in Q 2 and used to justify and generalize various noise prediction methods 

in Q 3.A version of the classical parallel mean flow approach (Le. the Lilley’s equation approach) is recovered in 

section 3.1 and certain conceptual difficulties are pointed out. Section 3.2 shows how these can be overcome by 

introducing non-parallel mean flow affects. The resulting modifications can significantly change the predictions of 

the theory. 

Some of the material in this paper was presented in preliminary form in Goldstein (1999,2000, 2002). But the 

present work is based on a more intuitively appealing form of the fundamental equations and a number of new 

results are derived. 

2. The LNS equations 

To obtain the fundamental equations, we begin with the Navier-Stokes equations in conservation law form: 

a 
at axj  J 

=o, 

-p i  a +---pv.v.+-=-g.. a aP a 
at ax, axi axj v ’  

a a a g j  a 
-(P& -P)+qP”j””  = - - + - v j c r . .  
at ax, ax, L~ 

(2.1a) 

(2.lb) 
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denotes the stagnation enthalpy, /z denotes the enthalpy, t denotes the time, x = (xl,x2,x3} are Cartesian coordinates, 

p denotes the pressure, pdenotes the density, v = ( vI,vz,v3} is the fluid velocity, qj is the viscous stress tensor, and qi 

is the heat flux vector. The dependent variables are required to satisfy an equation of state which, for definiteness, is 

taken to be the ideal gas law: 

p = pRT, h = c p T ,  (2.3) 

where R = cp - c,, is the gas constant, cp and c, are the specific heats at constant pressure and volume and Tis the 

absolute temperature. 

The dependent variables 

(2.4) 
- p = p + p ’ ,  p = p + p ’ ,  h=h+h‘ ,  vi = v i + v f ,  

- 
as well as the viscous terms qj and qi, are divided into their ‘base flow’ components P,p,h,Ti,Zq,and si, and into 

their ‘residual’ components g ,  p’,  h‘, v i ,  ob, and qi . The former are required to satisfy the inhomogeneous Navier- 

Stokes equations 

D,F=O, 

a3 - a 
o p  o at ax D -i --= DOHo +- 

where the nonlinear operator Do is defined by 

(2.5a) 

(2.5b) 

(2.5~)  

Do f = -+-(Tj af a f) 
at axj 

for any function f and 

4 



- - 1-2 
h ,Gh+-v  
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is the base flow stagnation enthalpy. The base flow variables, z,P, and I t ,  are also required to satisfy an ideal gas 

law equation of state, 

- 
and the ‘sources strengths’ q,, E,, and ai, which are assumed to be localized within the jet, will be specified 

subsequently. The reason for using both over bars and tildes when defining the base flow components will become 

clear when equation (3.9) is introduced below. 

To obtain the governing equations for the residual variables, substitute (2.4) into the Navier-Stokes equations 

(2.1) and subtract out (2.5) to obtain 

a - a p t - a  
axj J axi axj lJ’ 

D, (mi + p’vi) + - rn .v .  + - - -e. .  

(2.9a) 

(2.9b) 

where Do (defined by (2.6)) is now a linear operator and we have put 

(2.10) 
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and 

(2.1 1) 

mi = p i .  (2.12) 

Equations (2.9b and c) can be simplified by differentiating the quadratic terms on the left hand sides by parts and 

using equations ( 2 . 5 ~  and b), (2.9a), (2.10), and (2.13b) (below) to obtain (Goldstein 1999, 2000,2002) 

(2.13b) 

where 

is the total base flow stress tensor and we have put 

1 
2 

hi  I h'+-vt2.  

These equations can be put into a more transparent form by introducing the new dependent variables 

I Y - 1  r 2  p i  E p'+-@~ + ( Y - l ) H o ,  
2 

(2.14) 

(2.15) 

(2.16) 
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(2.17) 

and source strengths 

and 

to obtain 

and 

(2.1 8) 

(2.19) 

(2.20) 

(2.21) 

(2.22b) 

(2.22c) 

where 
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- 
D a - a  
Dt at axi = +vi- (2.23) 

denotes the convective derivative in terms of the base flow velocity and y = CJC. is thc spccific heat ratio. 

Equations (2.22) are the furidainenta~ equations on which this paper is based. They are exact consequences of 

the original Navier-Stokes equations, but have been rearranged so that their left-hand sides are the same as the 

equations that would have been obtained by linearizing the convective form of the Euler equations about the base 

flow (2.5). In other words, they are the linearized inhomogeneous Euler (LIE) equations but with different 

(nonlinear) dependent variables ul! and p i ,  which should cause no particular difficulty since, for the present purpose, 

they can be treated as five linear equations in five unknowns-one of which reduces to the pressure fluctuations in 

the far field. The dependent variable P: 1 (Y - 1) is closely related to the total residual energy density per unit 

volume. The right-hand sides correspond to the sources that would be obtained by imposing the external stress 

perturbation e$ - zG and external energy flux perturbation qj - f i i .  In other words, the fundamental equations (2.22) 

are just the linearized Navier-Stokes (LNS) equations with modijied dependent variables and with the viscous stress 

perturbation replaced by the generalized Reynolds stress e> - zv and the heatflux perturbation replaced by the 

generalized stagnation enthalpyflux q l -  f i i .  A formal vector Greens function solution is given in the Appendix. 

Lighthill (1952, 1954) pointed out that his equation implies that there is an exact analogy between the density 

fluctuations in any real flow and those produced by a quadrupole source in an ideal (non-moving) acoustic medium. 

The LIE (or LNS) equations (2.22) show that there is an exact analogy between the fluctuations occurring in any 

real flow and the linear inviscid fluctuations about an arbitrary flow produced by appropriate external stress and 

energy flux perturbations. The externally applied stress field can be associated with a quadrupole source in the 

stationary medium case considered by Lighthill. Unfortunately, there is no completely satisfactory definition of the 

multipole source order for a general moving medium, but one possible way of generalizing the stationary medium 

definition is to associate the term quadrupole with the source produced by a fluctuating stress field. The enthalpy 

flux term would then correspond to a dipole source. This is discussed in more detail in $ 3.1 below. 

The classical acoustic analogy approaches referred to in the introduction follow the Lighthill philosophy and 

rearrange the Navier-Stokes equations into the form of a single moving medium wave-like equation with an 

appropriate source term. Unfortunately, the wave operator part of the resulting equation (usually the left-hand side) 
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then contains both linear and nonlinear terms. Application of these equations to specific flows requires that this 

operator be linearized by moving the nonlinear terms to the right side, which causes the source term to become very 

complicated (see Colonius, Lele, and Moin 1997 and Freund and Fleischman 2002). The present approach differs 

from these classical approaches by carrying out an exact linearization at the outset and, as the LNS (or LIE) 

equations show, the resulting source terms are then quite simple and easy to interpret-rovided the right set of 

dependent variables is selected. No additional rearrangement of the LIE equations is required when specific choices 

of the base flow are introduced. 

One possible drawback of this approach is that it does not usually lead to a single wave equation (but see Q 3.1 

below) for an appropriate dependent variable. This is not, however, really necessary and, as was first pointed out by 

Bechara et al. (1994), the primitive form of the equations (such as those being considered here) may even be more 

convenient for certain numerical purposes. 

3. Applications of fundamental equations 

In spite of these features, the LNS (or LIE) equations would still amount to little more than a sterile abstraction 

if specific base flow choices were not introduced. Some appropriate choices are discussed below. 

3.1 Homogeneous base flows 

We begin with the case where the base flow equations are homogeneous and inviscid so that the right sides of 

(2.5) are identically zero. A general class of solutions to these equations, which quite conveniently provides a good 

approximation to the actual mean flow field in a jet, is the unidirectional transversely sheared mean flow 

iii = ~ ~ , ~ ( x ~ , x ~ ) ,  jj = constant, is = P(x~.x~) 

The continuity equation ( 2 . 2 2 ~ )  then decouples from the remaining four LNS (or LIE) equations, which now 

become 
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au; - &+e- - ( y  -1) 
Dt axj ax, 

where ElDt reduces to 

E a  a 
Dt at ax, -=-+u-. 

(3.3) 

(3.4) 

These equations are just the inhomogeneous compressible Rayleigh equations (Betchov and Criminale 1967) and, 

as is now well known (see chapter 1 of Goldstein 1976), the velocity variable u; can be eliminated between them (by 

taking the divergence of the first equation and the convective derivative of the second, subtracting the results and 

then using the first equation to eliminate the velocity fluctuation on the left-hand side) to obtain the inhomogeneous 

Pridmore-Brown equation 

where 

L E -  E [ a -  - c 2 - - -  a E 2 j  -2-- au a -  c2 - a 
Dt axi ani Dt2 an, ax, ax, 

is the variable density Pridmore-Brown (1958) operator and 

is the square of the mean flow sound speed. This is yet another form of Lilley’s equation with a quadrupoleldipole 

type source term, which is clearly more complicated than the original Rayleigh equation sources. 
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This equation does not reduce to Lighthill’s result in the limit U-+ 0 and p-+  constant considered by Lighthill 

(1952) but it does, with some rearrangement, reduce to a form of Lighthill’s equation obtained by Lilley (1974). 

Lighthill originally suggested that the inconvenient 8 g  ( p  - c,’p) term that appears in his stress tensor should be 

associated with non-isentropic density fluctuations, which are presumably produced by viscous effects and are, 

therefore, likely to be negligible. Lilley (1974) pointed out that this term also has an isentropic component (which 

may be an important noise source when the mean density @e., temperature) is non-constant) and proceeded to 

derive an equation, which separated out these two components. Unfortunately, the resulting source term contains a 

dipole component (corresponding to the enthalpy flux q; in equation (3.3)). However, the second time derivative 

that appears in (3.6) causes it to have the same efficiency as the quadrupole source term in the low-frequency (or 

long wavelength) limit-, which is the only situation where the multipole nature of the source has any significance. 

It is worth noting that the dependent variables ut! and h’ and consequently the ‘source strengths’ e; and 7; that 

appear in (3.2) and (3.3) do not have zero time averages and therefore still contain an undesirable mean flow 

component. It is also worth noting that these equations possess homogeneous solutions corresponding to spatially 

growing instability waves on the base flow (3.1) (Betchov and Criminale, 1967). They also possess homogeneous 

solutions corresponding to the continuous spectrum. The complete solution to these equations consists of a particular 

solution plus these homogeneous contributions, but the result is meaningless because the instability waves become 

unbounded (infinite) far downstream in the flow. The usual resolution is to completely neglect the instability wave 

contribution. Dowling, Ffowcs Williams, and Goldstein (1978) attempted to justify this by invoking causality 

arguments. 

3.2 Steady non-parallel base flow 

A better resolution is obtained by choosing the base flow to be the actual mean flow of the jet. The over bar on 

the dependent base flow variables would then denote the time average 

where the dot is a place holder for p,  vi, p ,  and h, and 
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(3.9) 

- 
denotes a Favre averaged quantity (Lele 1994) for all variables except h,, which is defined by (2.7j. Notice that 

(2.8) is completely consistent with the overall ideal gas law (2.3) when the tilde is defined in this fashion. 

The time derivatives drop out of the base flow equations (2.5), which do not, of course, form a closed system. 

The source strengths are given by 

(3.10) 

(3.1 1) 

(3.12) 

The base flow equations are now the ordinary RANS equations, which are usually closed by assuming some 

sort of model relating the source terms to the mean flow variables Fi, p ,  F ,  and h and their derivatives, such as the 

Boussinesq model (Speziale 1991; Speziale and So 1998) 

- 

(3.13) 

for the Reynolds stresses, with additional equations to determine the turbulent viscosity ,UT and a similar model for 

Hj . The fundamental LNS equations (2.22) remain exact even when these approximations are introduced since, as 

already noted, the base flow source strengths can be arbitrarily specified. But, (3.8) would only be an approximation 

and the base flow would be somewhat different from the actual mean flow in the jet. 

- 
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The time average flow need not, of course, be determined from a RANS computation. It can, for example, be 

determined by applying (3.8) to a LES or a DNS computation. The base flow sources (3.10) and (3.12) can then be 

written more compactly as 

(3.14) 

(3.15) 

with E, still be given by (3.1 1). The inviscid LIE (or LNS) equation source strengths e; - &j and 17; - ri would 

be proportional to the differences between the fluctuating and Favre averaged Reynolds stresses and enthalpy fluxes, 

which means that these sources would now be true fluctuating quantities with zero time averages, even in the 

viscous case .This insures that the residual variables will have that property as well. (The fact that p i  = U’ = 0 can 
- -  

also be verified directly from (2.16), (2.17), (3.11), and (3.14).) 

The corresponding LIE equation sources, which are in principle exact and (as noted in section 2) simpler than 

those that appear in the literature, must still be modeled. This is most easily accomplished by using the formal 

Greens function solution (A-9) to express the far field pressure in terms of the near field source distribution. The 

result can then be time averaged to relate the mean square pressure in the far field to the source correlation function, 

which means that it is only necessary to model this latter quantity and not the instantaneous sources themselves. The 

resulting fourth order two point time delayed correlations involve pure fluctuating quantities and do not contain the 

awkward mean flow component that appears in the parallel base flow model discussed in 8 3.1. (The importance of 

this property was demonstrated by Bogey, Bailly, and Juvt (2002)). These correlations can be expressed in terms of 

second order velocity and enthalpy correlations (which are very close to what is experimentally measured) by 

invoking the quasi-normal approximation (Millionschikov, 1941) -which is thought to be fairly accurate in this 

context. 

The most important difference between the present results and the parallel flow results of Q 3.1 is that the 

homogeneous solutions to the LIE (or LNS) equations, which presumably correspond to instability waves growing 

and then decaying on the diverging non-parallel base flow, will always remain bounded. This eliminates the paradox 

that arose in Q 3.1 .The LIE equation solutions therefore remain bounded and can, as a consequence, be used to 
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calculate the radiated sound. The relevant solution consists of a particular solution that is driven by the sources (Le. 

it satisfies causality and therefore the appropriate upstream boundary conditions) and a homogeneous solution that is 

driven by the upstream boundary conditions, say at the nozzle exit. 

The significance of these results can be understood by considering an idealized subsonic or a nearly perfectly 

expanded supersonic jet. The spread rate, say&, of the base flow will then be uniformly small, which implies that the 

mean pressure gradient will be O(&, the mean cross-flow will be O(E),  and all streamwise changes in the base flow 

will occur on the slow streamwise length scale  EX^. The source driven particular solution can, as noted above, be 

constructed from the casual vector Green function, which satisfies (A-7) and consists of a component that decays to 

zero when the unscaled streamwise coordinate X I  - X I  ' becomes large plus a component that decays to zero on the 

long (slow) streamwise length scale E ( X I  -xl') but becomes unbounded when the unscaled streamwise coordinate 

becomes large. The former component can be calculated by treating the slow variable E x1 as a parameter using the 

parallel flow solution (3.1) to simplify the linearized Euler operator (A-I). This approximation cannot, however, be 

used to determine the latter component (which is zero when E ( X I  - xI ') <O but corresponds to a linear instability 

wave (or waves) when E ( X I  --xi') >O, Briggs, 1964; Bers, 1975), since the resulting local solution would become 

unbounded and would not remain valid over the long streamwise length scale E ( nl - xI ') on which this component 

evolves. The appropriate result is obtained by retaining O( E )  terms in the linearized Euler operator (A-1) and using 

the multiple scales method to render the solution uniformly valid. 

Equation (A-8) (or (A-9) and (A-IO)) shows that both components of the Greens function act on the same 

source term. Each component is capable of producing acoustic radiation - even at subsonic Mach numbers (Tam 

and Morris 1980). The first corresponds to the usual Lilley equation solution but with slowly varying coefficients 

and with e$ and 7: replaced by e$ - zu and qj - bi, respectively. The second is associated with linear instability 

waves but is very different from conventional instability models since these waves are now continuously generated 

along the length of the jet and do not constitute separate sound sources. Their only role is to produce the 

appropriate Greens function. Each component of this function can be thought of as a filter which only allows certain 

elements of the source spectrum to reach the far field. Since these Greens function components are expected to 

respond to different portions of this spectrum, the resulting radiation field should exhibit a bi-model structure. Tam 

(1998) and Tam, Golebiowski, and Seiner (1996) recently presented some experimental evidence which strongly 

suggests that the jet sound field actually has such a structure -especially at supersonic Mach numbers. The 
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contribution of the second Greens function component will probably be fairly small at subsonic Mach numbers but 

is likely to be dominant at supersonic speeds. The present result is therefore very different than the parallel flow 

model of the previous subsection. 

The homogeneous solution, which is usually associated with the large-scale coherent structures (Crow and 

Champagne 1971; Mankbadi and Liu 1984; Gaster, Kit, and Wygananski 1985), is similar to the second component 

of the Greens function solution in that it involves instability waves and must also be determined from a multiple 

scales analysis. It is, however, expected to be small compared to the second component of the particular solution 

since it is only generated at the upstream boundary while the latter is generated over an extended streamwise region. 

The two solution components may be distinguished by their relative coherence, since the homogeneous solution 

(which is associated with the relatively narrow band response of the jet shear layers to the upstream boundary 

conditions) is expected to be more coherent than the particular solution, which can involve both coherent and 

incoherent components. However, the only unequivocal distinction is that the homogeneous solution generates 

sound through a linear process while the particular solution generates sound through non-linear mechanisms. These 

solutions can, of course, be coupled since the acoustic radiation from the particular solution can trigger instability 

waves in the upstream region, say at the nozzle lip. However, this effect is probably insignificant (relative to the 

effect of the pre-existing upstream disturbances) for the noisy flows that are of technological interest. 

Another difference between the present results and those of the previous subsection is the term on the left- 

hand side of (2.22b), which drops out of the parallel base flow model of 0 3.1 but can now produce a potentially 

strong coupling between (2.22b) and ( 2 . 2 2 ~ )  and the continuity equation (2.220) . This term is expected to be small 

when the mean flow is nearly parallel, as it is in idealized subsonic jets. However, real turbojet flows are not all that 

parallel in the vicinity of the nozzle-especially when the latter is of the mixer-ejector type. The term could also be 

important for improperly expanded supersonic jets and in flows that arise in non-aeronautical applications of the 

LNS equations (2.22). 

3.3 Unsteady compressible base flows 

While the coherent structures are at best poorly defined, there is some evidence to suggest that they may not be 

adequately represented by the linear instability waves. A better representation can be obtained by making them part 

of the base flow, which would then, of course, have to be unsteady. Calculations based on linear stability theory 

(Reau and Tumin 2000a and b; Liu 1998) suggest that good results can be obtained by allowing the base flow 
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- 
momentum source qj to again be of the Boussinesq form (3.13) with a similar representation for the enthalpy source 

6 . Go would still be given by (3.18). The RANS type eddy viscosity model also seems to work fairly well. The 

resulting base flow equations would then be the unsteady RANS or (URANS) equations with the unsteadiness being 

driven by the random upstream boundary conditions. The LNS (or LES) equations (2.22) are again exact. 

Bastin et al. (1997) carried out the relevant computation for a two dimensional planar jet. They used a standard 

k-& model for the eddy viscosity with an appropriately reduced numerical coefficient. Their results seem to over 

predict the contributions of the large scale structures, which suggests that a more refined turbulence model might be 

in order. 

The relation between the URANS solutions and the coherent structures can be made more plausible by letting 

the over bars on the base flow variables denote the ensemble/phase average 

(3.16) 

where f can be any of the dependent variables, fi denotes the value off  in the ith realization of the flow and the tij 

denote appropriate time delays, which are introduced to account for the fact that each of the M coherent structures 

will have a different phase in each realization of the flow. Bastin et ai. (1997) proposed using a conventional 

ensemble average to represent the coherent structures, which would correspond to setting tu = 0 in. (3.16). Equation 

(3.16) will represent a conventional phase average when M=l and all of the members of the ensemble correspond to 

the same realization of the flow. This would probably provide a good representation of the coherent structures in a 

flow that is artificially excited by a periodic source (Liu, 1998). The appropriate time intervals til would then be 

integral multiples of the period T of the excitation. The precise values of the tu would, of course, be unknown in 

naturally occurring flows, but that is largely irrelevant for the present purposes. f consists ofthe time average o f f  

(i.e., the mean flow) plus the ensemble/phase average of the fluctuating component off(Reyno1ds and Hussain 

1970; Hussain 1983). 

The tilde is still defined by equations (2.8) and (3.9), the base flow source terms < j >  Go, and f i i  are still given 

by (3.10) to (3.12) (but not by (3.14) and (3.15)) and the baseflow is no longer non-radiating. It is likely to be 

composed of the larger scale components of the motion and may therefore bear some resemblance to the resolved 
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component of a corresponding Large Eddy Simulation (LES) (Bastin et al. 1997). As in LES, the sources, which 

now account for the effect of the random turbulence on the coherent motion, must be modeled. Using the 

Boussinesq type model (3.13) for the momentum source (3.10) and a similar model for the enthalpy source (3.12) 

leads to the URANS equations alluded to above. 

While still expensive, URANS computations are much less demanding of computer resources than the DNS 

computations referred to in the INTRODUCTION (Basin et al. 1997). There is, therefore, some hope that they can 

be used to predict the sound emission from realistic flows. In any event, the residual variables (which now 

correspond to the incoherent part of the motion) can, and probably do, contain significant large scale components, 

which would not be the case in LES where the pure spatial filtering that is usually used would cut off these 

components. These variables are again governed by the LIE (or LNS) equations (2.22) but the homogeneous 

solution (if it exists) must now be set to zero, since the upstream boundary conditions that would drive this solution 

are already satisfied by the base flow. This approach formally resembles the two stage LES approach proposed by 

Bodony and Lele (2002), but the philosophical basis and modeling assumptions are quite different. 

The complete sound field can, at least in principle, be calculated by adding the base flow sound field to the 

far-field LIE (or LNS) equation solution. The latter equations are, in principle, exact, but their source terms still 

have to be modeled .It is, however, no longer possible to use the procedure described in the previous subsection to 

relate the far-field pressure correlation to the correlation of the source function since the base flow is now unsteady. 

It is therefore necessary to model the instantaneous source strengths rather than their correlations-which is a much 

more difficult task. It may be possible to use some sort of stochastic source model such as the ones used by Bailly et 

al. (1995) and Bodony and Lele (2002). A more expedient approach might be to neglect the contribution of the 

unsteady coherent component of the base flow to the coefficients of the LIE equation operator (A-1), since it is 

likely to be fairly small compared to the mean flow contribution. The incoherent far-field pressure auto-correlation 

could then be related to the source correlations, which would now, however, involve only the incoherent part of the 

motion. But this creates somewhat of a dilemma because only the correlation of the total unsteady motion is actually 

measured in the experiments. And even if this difficultly could be overcome, the result would only be meaningful if 

the coherent and incoherent components of the motion were relatively uncorrelated (Bastin et a1 1997). It would then 

be a generalization of the RANS equation approach described in the previous subsection and would reduce to that 
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approach if the base flow computation were linearized about the mean flow and source term perturbations were 

neglected. 

However, we have already indicated that this linearization may be unrealistic and Reau and Tumin (2002a and 

bj show that the perturbations in the source terms cannot be neglected. Liu (1988) and Mankbadi and Liu (1984) 

adopted an intermediate approach in which the coherent motion was determined from integral conservation laws by 

using an approximate shape functions taken from linear instability theory. 

The base flow equations with source strengths (3.10) to (3.12) formally resemble the filtered Navier-Stokes 

equations (Rogallo and Moin, 1984) and there are a number of interesting ways of choosing the filter in these 

equations. Goldstein (2002) showed that it can even be chosen to pass only the subsonically convecting components 

of the motion which, according to conventional wisdom (see, for example, Freund 2001), should cause the unsteady 

base flow to be non-radiating .But this probably needs further study. It may, for example, be more appropriate to 

require the stream-wise component of the convection speed to be subsonic. The relevant flow can, in any case, be 

computed by using a Fourier-Spectral method with only subsonically convecting spectral base functions retained in 

the computation. The advantage of using an unsteady but non-radiating base flow is discussed in the next subsection. 

3.4 Non-radiating unsteady base flows 

The radiated sound is typically many orders of magnitude smaller than the non-radiating component of the 

motion in virtually all high speed air jets, as well as in most other high speed flows. In fact, it is usually many orders 

of magnitude smaller than the errors incurred in computing the non-radiating part of the flow. A number of 

investigators have even suggested that the ‘acoustic component’ of the numerical solution to the full Navier-Stokes 

equations would be hopelessly corrupted by these errors or even by the computational noise itself (e.g. Roe 1992; 

Crighton 1993). This difficulty would certainly be overcome if the radiating component of the motion could be 

separated out and calculated as if it were a small perturbation about the non-radiating component, which amounts to 

requiring that the base flow in the decomposition (2.4) be the entire (or almost the entire) non-radiating component 

of the motion. 

A nice feature of the RANS base flow of 9 3.2, or for that matter, any steady base flow, is that it is non- 

radiating. Another possible non-radiating base flow is an incompressible flow. More generally, the base flow can 

always be made non-radiating by requiring that 
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(3.17) 

where xL is the transverse coordinate vector. This will force the flow to behave incompressibly at large transverse 

distances and should therefore prevent any acoustic radiation from reaching the far-field. 

It is, in general, impossible to satisfy the homogenous energy equation ( 2 . 5 ~ )  and still impose arbitrary 

- - 
requirements on ap /  at .  We can, however, choose the energy equation sources ffo and Hi so that this equation is 

identically satisfiedfor any p by setting 

I 

The momentum equation source strength qj can again be set to zero. It is then possible to preselect p and require 

that is satisfy (3.17). This means that (2 .5~)  and (2.5b) are similar to the incompressible Navier-Stokes equations in 

that they can be solved for Fi and p independently of the energy equation. 

The source terms in the LNS equations (2.22b) and (2.22~)  now become 

(3.19b) 

A cleaner result is obtained when fi0 is eliminated from the residual equation dependent variable p i  by letting 

(3.19~) 

The left sides of the LNS (or LIE) equations (2.22) remain unchanged and their right-hand sides become 

(3.20) 

RHS (2.22a) = 0. 
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(3.21a) 



de!. 
RHS (2.22b) = 3, ax (3.21b) 

and 

(3.2 IC) 

The strictly incompressible base flow is recovered by setting p =constant. Hardin and Pope (1994) developed a 

two-stage theory in which the base flow was incompressible and viscous but the residual flow was homentropic. A 

more consistent approximation would be to set the residual viscous and heat conduction terms to zero in (3.21 b and 

c),  which roughly corresponds to the somewhat weaker requirement that the residual flow be isentropic. 

When the flow is inviscid and the base flow density 3 is constant, the deviation vf of the velocity form and the 

incompressible approximation Ci should be O(M2) when the Mach number M is small and the quadratic source terms 

a(e6 axj and 377) / axj) + e;(a?i 1 ax,) should then be negligible compared to the base flow source term in 

(3.21 c). This implies that the sound field is primarily generated by the convective derivative of the incompressible 

pressure fluctuations, since aCi/axi = 0 in this case. The result is, therefore, related to Ribner's (1962) 'dilitation' 

theory of jet noise, but unlike Ribner's original proposal, the interaction of the sound with the incompressible flow is 

now explicitly accounted for. Also, the purely convected pressure disturbances (i.e., the pseudo sound) are now 

(explicitly) non-radiating. The important thing is that the sound sources are nearly independent of the residual 

variables, which should certainly be required if the latter are to be associated with the acoustic part of the motion. 

Tam and Auriault (1999) have also proposed using the pressure fluctuation (though not the incompressible pressure 

fluctuations) as a sound source. 

I (  

The strictly incompressible approximation cannot remain valid at supersonic Mach numbers (even for ideally 

expanded jets), since shear layer spread rates and turbulence structures are known to be Mach number dependent in 

this case (Smits and Dussauge 1996, ch. 6), and it is even questionable at moderately high, say above 0.3, subsonic 

Mach numbers. It may, however, be possible to choose the density so that the base flow ( 2 . 5 ~ ~ )  and (2.56) with 

c, = 0 remains close to the real flow and it still non-radiating (i.e., it satisfies (3.17)). An intuitively appealing.way 
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of accomplishing this is to require that 3 be convected by a localized flow field, say 

constrained to lie within the interior of the jet, which means that 

( x , t ) ,  whose streamlines are 

" ( E )  + f. " ( E )  = 0, 
at i? axj  R 

(3.22) 

- 
where R becomes constant at large distances from the flow, but is otherwise arbitrary. The upstream boundary 

conditions can then be chosen to insure that p decays at large transverse distances from the flow, which should then 

ensure that (3.17) is satisfied. This can be thought of as a generalization of Morkovin's hypothesis (Morkovin 1962; 

Bradshaw 1978) which, unlike the original proposal allows for fluctuations in the density. There is therefore some 

hope that this model (unlike the original Morkovin proposal) will provide a reasonable approximation for jet-like 

flows, even at supersonic Mach numbers (Smits and Dussauge 1996, p. 138). 

- 
p and will also satisfy an equation of the form 

a -  a -- 
-p+-pvj = o  
at axj  

if and E are required to satisfy the steady flow type continuity equation 

a -- 
ax, -RVj = O  

In which case, the continuity equation (2.5a) becomes 

(3.23) 

(3.24) 

(3.25) 
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which means that the base flow satisfies the steady continuity equation in a reference frame moving with the 

velocity q,  i.e., the relative momentum flux p(?i - 8.) now has zero divergence. 

For numerical purposes it may be better to determine p from an equation of the form 

(3.26) 

- 
where Sij(x, t )  is required to vanish at an appropriate rate as x+w, but is otherwise arbitrary. This can be seen by 

eliminating the momentum flux pvi between the base flow continuity and momentum equations ( 2 . 5 ~ )  and ( 2 3 )  to 

obtain the Poisson’s equation 

(3.27) 

- 
82s.: a2 p rirj - sii + 

aX,ax 
2-- B - _  ( 

L 

- axiaxi 

where the dot denotes differentiation with respect to time. The free-space Greens function solution to this equation is 

(3.28) 

which shows that = o(1X1-3) as 1x1 + tQ if i i j  is chosen so that = o(lxl-3) as 1x1 + 00. This is the same as the 

pressure decay rate experienced by a localized incompressible flow (Crow 1970) and is therefore likely to be fast 

enough to greatly simplify the implementation of the far-field boundary conditions. The density p will still satisfy 

(3.23) (and therefore (3.25)) if t. is defined by 

(3.29) 
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The density can easily be localized if 6 is required to be steady. It could even be taken to be the actual mean 

velocity of the jet, as determined from a preliminary RANS calculation (see 9 3.2). In which case, (3.24) would 

require that E be the mean density of the jet. 

There are, of course, many other possible choices for and c.. They could, for example, be chosen so that the 

base flow source term 

in (3.21~) has zero mean, which would then ensure that the base flow satisfies the correct homogeneous energy 

equation in the mean and that p i  has zero mean. This would, however, require that an additional integral-differential 

equation be solved along with (2.5a and b), which would make the base flow computation more difficult-possibly 

more difficult than an actual compressible DNS computation, which would, of course, defeat the whole purpose of 

the two stage approach. 

Lighthill (1952) argued that the strength of his quadrupole source could be obtained to a good approximation by 

calculating its value for an equivalent flow devoid of sound. The present result provides an analytical basis for that 

idea. It is, of course, possible to move the residual stresses to the left side of the LNS equations and calculate the 

sound from the full nonlinear equations, but that would make the present approach more complicated and 

computationally more expensive than solving the original Navier-Stokes equations. In fact, the main justification for 

using this approach is to ensure that the errors incurred in computing the non-radiating component of the motion do 

not unduly contaminate the radiating component -which is best accomplished can only be accomplished if the 

residual variables are required to be much smaller than the base flow variables, which should ensure that the 

linearization is justified. 

4. Conclusions 

A general set of linearized inhomogeneous Euler (LIE) equations has been derived and used to put a number of 

classical and recently proposed noise prediction methods on a more rational basis and in most cases extend them in 

new directions. The source terms are exactly the same as those that would be obtained by imposing externally 

applied stress and energy flux perturbations on the flow and the equations are therefore exactly the same as the 
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linearized Navier-Stokes (LNS) equations, but with the viscous stress perturbation replaced by an appropriate 

Reynolds stress and the heat flux perturbations replaced by an appropriate enthalpy flux. The dependent variables 

are also somewhat different. 

Lighthill pointed out that his equation implied that there was an exact analogy between the density fluctuations 

in any real flow and those produced by a quadrupole source in an ideal (non-moving) acoustic medium. The LNS (or 

LIE) equations show that there is an exact analogy between the fluctuations in any real flow and the linear inviscid 

fluctuations about an arbitrary base flow produced by externally imposed stress and energy flux perturbations. This 

does not, of course, imply that the LNS (or LIE) equations, or for that matter, any of the previously proposed 

'acoustic analogy' equations can provide an unambiguous identification of sources, except perhaps for the 

generalized incompressible flows considered in 0 3.4. These equations are only useful when the 'base flow' is 

reasonably close to the actual fluid motion and, in most cases, can only serve as a guide for identifying and 

ultimately modeling the apparent sources of sound. The sound is just a by-product of all the processes occurring in 

the flow and it is highly unlikely that "true" sound sources can be identified in any realistic turbulent flow. 

The LIE equations are made explicit by considering various possible base flows. A number of such flows, 

corresponding to progressively more complex choices of the base flow source terms, were described in 0 3. 

The first three choices require source term modeling as in the classical Lighthill approach. But these terms now 

generate only part of the sound field in at least two of these. The remainder must be determined by the direct 

solution of the appropriate linear or non-linear equations, which is another indication that the mathematical sources 

need not be the true sources of sound. The last subsection considers formulations in which the dominant LNS 

equation source term can be computed but require that the base flow be chosen to minimize the neglected source 

terms.-which is a different approach to jet noise modeling that has yet to be exploited. 

Appendix 

The five LNS equations (2.22) can be written more compactly by introducing the five dimensional operator 

wherep, v = 1,2,. . . ,5 while the Latin indices i, j are restricted to the range 1,2,3. 
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0, otherwise i 
N 

and .rP,are both zero w h e n p 3 ,  c2 is given by (3.7), the Einstein summation convention is still being used 

and spv is the five dimensional Kronecker delta. 

Then Eq. (2.22) can be written as 

Lpv% = sp , 

where 

is the five dimensional dependent variable vector, the five dimensional source vector sp is given by 

and & i j  = ‘7) and Z4j  = q j .  This system can be formally solved by using the vector Greens function (Morse and 

Feshbach 1953, pp. 878-886) gVu(X,fIX‘,f’), which satisfies 

L,, g,, = sp, s(x - x’)s(t - t’) , 
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to obtain 

and the derivatives can be transferred to the Greens function to obtain 

where 

(A - 10) 
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